42 research outputs found

    Un modèle d'architecture 3D par voxels pour simuler les paramètres structuraux des couverts forestiers de conifères

    Get PDF
    La qualité des mesures indirectes de la structure du couvert végétal repose principalement sur la connaissance de l'architecture des couverts végétaux. Nous avons développé des modèles d'architecture du couvert forestier selon plusieurs niveaux de détails afin d'aider l'interprétation des images de télédétection. C'est le cas pour le modèle VoxTreK (Voxel Tree with 3D-Kites) qui utilise les données géométriques recueillies sur le terrain pour reproduire l'architecture du couvert au niveau de détail des branches. Ce modèle est conçu pour son utilisation par les modèles de réflectance en télédétection. Toutefois, la photographie hémisphérique est utilisée dans cette étude comme complément aux approches de télédétection satellitaire ou aéroportée pour sa capacité à déceler un plus grand détail de la structure du couvert. L'objectif principal est de déterminer les apports du modèle d'architecture par voxels VoxTreK dans l'estimation des paramètres structuraux à l'aide de la photographie hémisphérique."--résumé abrégé par UMI

    Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state.

    Get PDF
    Funder: Gouvernement du Canada | Instituts de Recherche en Santé du Canada | CIHR Skin Research Training Centre (Skin Research Training Centre); doi: https://doi.org/10.13039/501100007202Funder: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (NSERC Canadian Network for Research and Innovation in Machining Technology); doi: https://doi.org/10.13039/501100002790DOCK (dedicator of cytokinesis) proteins are multidomain guanine nucleotide exchange factors (GEFs) for RHO GTPases that regulate intracellular actin dynamics. DOCK proteins share catalytic (DOCKDHR2) and membrane-associated (DOCKDHR1) domains. The structurally-related DOCK1 and DOCK2 GEFs are specific for RAC, and require ELMO (engulfment and cell motility) proteins for function. The N-terminal RAS-binding domain (RBD) of ELMO (ELMORBD) interacts with RHOG to modulate DOCK1/2 activity. Here, we determine the cryo-EM structures of DOCK2-ELMO1 alone, and as a ternary complex with RAC1, together with the crystal structure of a RHOG-ELMO2RBD complex. The binary DOCK2-ELMO1 complex adopts a closed, auto-inhibited conformation. Relief of auto-inhibition to an active, open state, due to a conformational change of the ELMO1 subunit, exposes binding sites for RAC1 on DOCK2DHR2, and RHOG and BAI GPCRs on ELMO1. Our structure explains how up-stream effectors, including DOCK2 and ELMO1 phosphorylation, destabilise the auto-inhibited state to promote an active GEF

    The fourth phase of the radiative transfer model intercomparison (RAMI) exercise : Actual canopy scenarios and conformity testing

    Get PDF
    The RAdiative transfer Model Intercomparison (RAMI) activity focuses on the benchmarking of canopy radiative transfer (RT) models. For the current fourth phase of RAMI, six highly realistic virtual plant environments were constructed on the basis of intensive field data collected from (both deciduous and coniferous) forest stands as well as test sites in Europe and South Africa. Twelve RT modelling groups provided simulations of canopy scale (directional and hemispherically integrated) radiative quantities, as well as a series of binary hemispherical photographs acquired from different locations within the virtual canopies. The simulation results showed much greater variance than those recently analysed for the abstract canopy scenarios of RAMI-IV. Canopy complexity is among the most likely drivers behind operator induced errors that gave rise to the discrepancies. Conformity testing was introduced to separate the simulation results into acceptable and non-acceptable contributions. More specifically, a shared risk approach is used to evaluate the compliance of RI model simulations on the basis of reference data generated with the weighted ensemble averaging technique from ISO-13528. However, using concepts from legal metrology, the uncertainty of this reference solution will be shown to prevent a confident assessment of model performance with respect to the selected tolerance intervals. As an alternative, guarded risk decision rules will be presented to account explicitly for the uncertainty associated with the reference and candidate methods. Both guarded acceptance and guarded rejection approaches are used to make confident statements about the acceptance and/or rejection of RT model simulations with respect to the predefined tolerance intervals. (C) 2015 The Authors. Published by Elsevier Inc.Peer reviewe

    TWIST1 a New Determinant of Epithelial to Mesenchymal Transition in EGFR Mutated Lung Adenocarcinoma

    Get PDF
    Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT). The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33) and showed that TWIST1 expression was linked to EGFR mutations (P<0.001), to low CDH1 expression (P<0.05) and low disease free survival (P = 0.044). To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Optical Design at The Age of AI

    No full text
    Data-driven methods to assist lens design have recently begun to emerge; in particular, under the form of lens design extrapolation to find starting points (lenses and freeform reflective system). I proposed a trip over the years to better understand why the AI have been applied first to the starting point problems and where we are going in the future
    corecore